Wireless Communications and Mobile Computing
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate11%
Submission to final decision194 days
Acceptance to publication66 days
CiteScore2.300
Journal Citation Indicator-
Impact Factor-

Wireless Communications and Mobile Computing is now closed to new submissions

Wireless Communications and Mobile Computing will be ceasing publication soon. Following the closure, all published content will remain on the archived journal website and in abstracting and indexing databases.

Go to Table of Contents

 Journal profile

Wireless Communications and Mobile Computing provides the R&D communities working in academia and the telecommunications and networking industries with a forum for sharing research and ideas in this fast moving field.

 Editor spotlight

Chief Editor Dr Cai is an Associate Professor in the Department of Computer Science at Georgia State University, USA and an Associate Director at INSPIRE Center.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Hybrid Agent-Based Load-Balancing Approach Used in an IaaS Platform

Cloud computing has received a resounding welcome. It was created following methodical and thorough study in web services, distributed computing, utility computing, and virtualization, and it offers several benefits, including lower costs, less space required, and easier management. These advantages bring in a significant number of new users to the cloud platform every day. In addition, because cloud computing is an Internet-based computing paradigm, it must deal with the issue of overwhelming demands through effective load-balancing. A very small number of studies only focus on load-balancing problems in cloud computing platforms, while the majority of load-balancing research is accessible in many domains, including parallel, distributed, and grid computing. Infrastructure as a Service (IaaS), Software as a Service, and Platform as a Service are the three basic categories under which cloud computing falls. For these models, there are notable differences in the load-balancing techniques used. This work compared the outcome with the current method and presented a hybrid agent-based load-balancing approach for the IaaS platform.

Research Article

Hierarchical Cross Traffic Scheduling Based on Time-Aware Shapers for Mobile Time-Sensitive Fronthaul Network

To solve the problem of jitter and low network throughput caused by the impact of background flows on IQ traffic in mobile fronthaul network, this paper proposed a new scheduling model for background flows, named hierarchical crossover traffic scheduling mechanism based on time-aware shaper (HC-TAS) by improving the traditional counterpart. Then, in this new model, we designed an inbound scheduling algorithm based on frame length matching and an outbound scheduling algorithm based on queue status, making sure that smaller data frames will not be blocked by large data frames. This greatly improves the utilization of timeslots in the scheduling process and reduces the jitter impact of background flows. To verify its performance, we conducted experiments in a simulated fronthaul network conforming to IEEE 802.1CM. The experimental results show that, under the condition that the jitter is guaranteed to be zero, compared with two mainstream scheduling schemes, Comb-FITting and TAS + Preemption, our proposed scheme can achieve lower maximum end-to-end delay and higher link utilization. The proposed HC-TAS meets the requirements of low jitter and high bandwidth utilization in 5G fronthaul network, and the research results provide a technical basis for the application and development of general time-sensitive networks as well.

Research Article

On the Performance of MMSE Channel Estimation in Massive MIMO Systems over Spatially Correlated Rician Fading Channels

Massive multiple-input-multiple-output (M-MIMO) offers remarkable advantages in terms of spectral, energy, and hardware efficiency for future wireless systems. However, its performance relies on the accuracy of channel state information (CSI) available at the transceivers. This makes channel estimation pivotal in the context of M-MIMO systems. Prior research has focused on evaluating channel estimation methods under the assumption of spatially uncorrelated fading channel models. In this study, we evaluate the performance of the minimum-mean-square-error (MMSE) estimator in terms of the normalized mean square error (NMSE) in the uplink of M-MIMO systems over spatially correlated Rician fading. The NMSE allows for easy comparison of different M-MIMO configurations, serving as a relative performance indicator. Besides, it is an advantageous metric due to its normalization, scale invariance, and consistent performance indication across diverse scenarios. In the system model, we assume imperfections in channel estimation and that the random angles in the correlation model follow a Gaussian distribution. For this scenario, we derive an accurate closed-form expression for calculating the NMSE, which is validated via Monte-Carlo simulations. Our numerical results reveal that as the Rician -factor decreases, approaching Rayleigh fading conditions, the NMSE improves. Additionally, spatial correlation and a reduction in the antenna array interelement spacing lead to a reduction in NMSE, further enhancing the overall system performance.

Research Article

Analysis of Filtered Multicarrier Modulation Techniques Using Different Windows for 5G and Beyond Wireless Systems

In contemporary wireless communication systems, multicarrier modulation schemes have become widely adopted over single-carrier techniques due to their improved capacity to address challenges posed by multipath fading channels, leading to enhanced spectral efficiency. Orthogonal frequency division multiplexing (OFDM), a prevalent multicarrier scheme in 4G, is favored for its ease of implementation, interference resilience, and high data rate provision. But it falls short of meeting the requirements for 5G and beyond due to limitations such as out-of-band (OOB) emissions and cyclic prefixes. This paper introduces the filter bank multicarrier (FBMC) and universal filtered multicarrier (UFMC) with quadrature amplitude modulation (QAM) and phase shift keying (PSK) waveforms through Additive White Gaussian Noise channel (AWGN), Rayleigh fading channel and Rician channel. The objective of this paper is to enhance the performance of UFMC with reduced complexity through the new filtering approach for achieving optimal outcomes. The proposed scheme, incorporating Tukey filtering technique, demonstrates superior performance in reducing peak-to-average power ratio (PAPR) and improving bit error ratio (BER) compared to the original UFMC signal without necessitating additional power increments. Specifically, the UFMC system with Tukey filtering achieves a notable net gain of 5 dB. Simulation results demonstrate that utilizing various filter types in FBMC and UFMC systems, combined with QAM modulation, significantly reduces OOB emissions compared to conventional systems. In aspect to BER, Tukey window showed almost 10−6 at 15 dB SNR in UFMC which is better than FBMC.

Research Article

An Elliptic Curve Menezes–Qu–Vanston-Based Authentication and Encryption Protocol for IoT

The exponential growth of the Internet of Things (IoT) has led to a surge in data generation, critical for business decisions. Ensuring data authenticity and integrity over unsecured channels is vital, especially due to potential catastrophic consequences of tampered data. However, IoT’s resource constraints and heterogeneous ecosystem present unique security challenges. Traditional public key infrastructure offers strong security but is resource intensive, while existing cloud-based solutions lack comprehensive security and rise to latency and unwanted wastage of energy. In this paper, we propose a universal authentication scheme using edge computing, incorporating fully hashed Elliptic Curve Menezes–Qu–Vanstone (ECMQV) and PUF. This approach provides a scalable and reliable solution. It also provides security against active attacks, addressing man-in-the-middle and impersonation threats. Experimental validation on a Zybo board confirms its effectiveness, offering a robust security solution for the IoT landscape.

Research Article

An Intelligent Energy-Efficient Data Routing Scheme for Wireless Sensor Networks Utilizing Mobile Sink

Data collection and energy consumption are critical concerns in Wireless sensor networks (WSNs). To address these issues, both clustering and routing algorithms are utilized. Therefore, this paper proposes an intelligent energy-efficient data routing scheme for WSNs utilizing a mobile sink (MS) to save energy and prolong network lifetime. The proposed scheme operates in two major modes: configure and operational modes. During the configure mode, a novel clustering mechanism is applied once, and a prescheduling cluster head (CH) selection is introduced to ensure uniform energy expenditure among sensor nodes (SNs). The scheduling technique selects successive CHs for each cluster throughout the WSNs’ lifetime rounds, managed at the base station (BS) to minimize SN energy consumption. In the operational mode, two main objectives are achieved: sensing and gathering data by each CH with minimal message overhead, and establishing an optimal path for the MS using the genetic algorithm. Finally, the MS uploads the gathered data to the BS. Extensive simulations are conducted to verify the efficiency of the proposed scheme in terms of stability period, network lifetime, average energy consumption, data transmission latency, message overhead, and throughput. The results demonstrate that the proposed scheme outperforms the most recent state-of-the-art methods significantly. The results are substantiated through statistical validation via hypothesis testing utilizing ANOVA, as well as post hoc analysis.

Wireless Communications and Mobile Computing
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate11%
Submission to final decision194 days
Acceptance to publication66 days
CiteScore2.300
Journal Citation Indicator-
Impact Factor-

We have begun to integrate the 200+ Hindawi journals into Wiley’s journal portfolio. You can find out more about how this benefits our journal communities on our FAQ.